A ug 2 00 3 Virasoro Symmetries of the Extended Toda Hierarchy
نویسندگان
چکیده
We prove that the extended Toda hierarchy of [1] admits nonabelian Lie algebra of infinitesimal symmetries isomorphic to the half of the Virasoro algebra. The generators Lm, m ≥ −1 of the Lie algebra act by linear differential operators onto the tau function of the hierarchy. We also prove that the tau function of a generic solution to the extended Toda hierarchy is annihilated by a combination of the Virasoro operators and the flows of the hierarchy. As an application we show that the validity of the Virasoro constraints for the CP 1 Gromov-Witten invariants and their descendents implies that their generating function is the logarithm of a particular tau function of the extended Toda hierarchy.
منابع مشابه
Virasoro Symmetries of the Extended Toda Hierarchy
We prove that the extended Toda hierarchy of [1] admits nonabelian Lie algebra of infinitesimal symmetries isomorphic to the half of the Virasoro algebra. The generators Lm, m ≥ −1 of the Lie algebra act by linear differential operators onto the tau function of the hierarchy. We also prove that the tau function of a generic solution to the extended Toda hierarchy is annihilated by a combination...
متن کاملA Centerless Virasoro Algebra of Master Symmetries for the Ablowitz–Ladik Hierarchy
We show that the (semi-infinite) Ablowitz–Ladik (AL) hierarchy admits a centerless Virasoro algebra of master symmetries in the sense of Fuchssteiner [Progr. Theoret. Phys. 70 (1983), 1508–1522]. An explicit expression for these symmetries is given in terms of a slight generalization of the Cantero, Moral and Velázquez (CMV) matrices [Linear Algebra Appl. 362 (2003), 29–56] and their action on ...
متن کاملar X iv : 0 81 0 . 24 27 v 3 [ m at h - ph ] 2 1 A pr 2 00 9 The multicomponent 2 D Toda hierarchy : dispersionless limit Manuel Mañas and Luis Mart́ınez
The factorization problem of the multi-component 2D Toda hierarchy is used to analyze the dispersionless limit of this hierarchy. A dispersive version of the Whitham hierarchy defined in terms of scalar Lax and Orlov–Schulman operators is introduced and the corresponding additional symmetries and string equations are discussed. Then, it is shown how KP and Toda pictures of the dispersionless Wh...
متن کاملSeiberg-Witten Theory and Extended Toda Hierarchy
The quasiclassical solution to the extended Toda chain hierarchy, corresponding to the deformation of the simplest Seiberg-Witten theory by all descendants of the dual topological string model, is constructed explicitly in terms of the complex curve and generating differential. The first derivatives of prepotential or quasiclassical tau-function over the extra times, extending the Toda chain, a...
متن کاملThe spectrum of coupled random matrices
0. Introduction 1. Operators Λ and ε with [Λ, ε] = 1 and the δ-function 2. The two-Toda lattice 3. Bilinear Fay identities and a new identity for the two-Toda τ -functions 4. Higher Fay identities for the two-Toda lattice 5. Eigenfunction expansions and vertex operators 6. A remarkable trace formula 7. Two-Toda symmetries and the ASV-correspondence 8. Fredholm determinants of Christoffel-Darbou...
متن کامل